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Abstract 

The Markov Chain Monte Carlo (MCMC) method is a statistical almost experimental approach 

to computing integral using random positions, called samples, whose distribution is carefully 

chosen. In this research, a normal distribution model with unknown mean and known variance is 

considered. Posterior statistics are computed using the sample mean and standard deviation, as 

well as the prior mean and standard deviation, instead of data input. Because this is a single-

parameter model, posterior samples of mean are simulated in parallel by Monte Carlo 

simulation. This research also presents parallel communication schemes for simulated a single 

chain in Markov chain using Message Passing Interface (MPI). In this simulation, the number of 

simulation steps broadcast to all participating processes. Each process computes a partial sum of 

simulated values. All partial sums are combined into the grand sum. Finally, the root process 

computes posterior mean and standard variance.  A major purpose of this research is to advocate 

the use of parallelization within a single chain, hence infusing high-performance computing 

technologies.  
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Introduction 

Typically, implementation of a high-dimensional model based on Markov Chain Monte 

Carlo (MCMC) techniques is notoriously intensive in computing and often requires days, 

weeks, or even months of CPU (Central Processing Unit) time on personal computers and 

workstations. Therefore, in order to overcome such computational burden, parallel computing 

becomes appealing.  

Parallel computing operates on the principle that a large problem can be split into 

smaller components and solved concurrently (i.e.” in parallel”), each on a separate processor 

(or CPU core). An instance of a computer program and its activities that are taking place on 

each processor is referred to a process. Thus, parallel computing involves activating multiple 

processes that concurrently carry out related computing jobs and combining results by the main 

“controlling” process. Parallel computing can be achieved by programming with C, C++ e.g., 

using the MPI (Message Passing Interface) library to handle inter-process communication. 

High-performance computing communities have developed parallel programs for decades but 

were previously limited to programs running on expensive super-computers. In the past twenty 

years, interest in parallel computing has grown markedly due to physical constraints that 

prevent frequency scaling and to the need to handle datasets of unprecedented dimensionalities 

that are being generated. Parallel computing has now become a dominant paradigm in current 

computer architectures, mainly in the form of multi-core processors.  

Parallel MCMC methods have recently been adopted in statistics and informatics and in 

image processing. MCMC algorithms are seemingly serial, and parallelism is not as 

straightforward as one would expect. Many intensive computational tasks in some applications 

have been handled via some simple data parallelism, implemented through the “multiple-

tasking” mechanism. Multiple-tasking allows each processor to switch between tasks being 

executed on it, without having to wait for each task to finish, but this type of “parallel” 

computing is not scalable with the number of jobs. Recently, parallel MCMC algorithms and 

strategies have become a focal point for scientific computing. This is largely due to the need to 

handle datasets of unprecedented sizes. With datasets of unprecedented sizes in a model, the 

computing task is highly challenging, particularly with sophisticated models via MCMC 

                                                           
*
 Associate Professor, Department of Computer Studies, University of Yangon 

 



56   University of Yangon Research Journal 2016, Vol. 7   

implementation. This paper presents a technical description of parallel MCMC method. The 

algorithm typically deals with parallelization within a single chain.  

Parallel Simulation for a Single-Parameter Normal Model 

Consider a normal distribution model with unknown μ and known σ
2
. For a vector y of 

n identically independently distributed (iid) observations, the likelihood is: 

P (y|µ) =
n

i 1

 (1) 

If a normal prior is assumed, that is, P (µ)  exp (- )).  (2) 

where μ0 and  are hyperparameters. It can be shown that the posterior density μ is also 

normal : 

P (µ|y) = N (  (3) 

Intuitively, the posterior mean of θ is expressed as a weighted average of the prior 

mean ( μ0 ) and of the sample mean (  ), with weights equal to the corresponding precisions,  

   and , respectively. Because this is a single-parameter model, posterior samples of μ can 

be simulated in parallel by following the same algorithm as for Monte Carlo simulation. 

Parallel Monte Carlo Methods 

In practice, many statistical problems involve integrating over hundreds or even 

thousands of dimensions but usually these problems are not analytically tractable. Instead, 

Monte Carlo simulation methods can be used to tackle high-dimensional integrals. Standard 

Monte Carlo integration algorithms distribute the evaluation points uniformly over the 

integration regions. 

Parallel Computing for Evaluating Integrals 

To begin, consider the following integral 

E (P ( θ)) =  P( θ) ( ) d θ (4) 

for some high-dimensional θ with density ( ). Suppose the integral cannot be evaluated 

analytically. If n realizations of θ can be sampled independently from ( ) then, according to 

the strong law of large numbers, the sample average     provides an approximation 

to  when n → .  

Simple Monte Carlo algorithms proceed by averaging large numbers of values that are 

generated independently of each other. Obviously, Monte Carlo simulation is parallel in 

computing because it can be conducted concurrently. By parallel computing, the entire set of 

samples can be divided among the available CPU cores and then each core generates a portion 

and summarizes its local samples. After all processors have finished their tasks, a master 

program summarizes all the partial data and outputs the final result. 

Suppose that there are K CPU cores that generate a total of T samples, each handling an 

equal portion of these samples. For simplicity, assume that T is divisible by K, such that the 

quotient (m = T/K) is an integer. Then, parallel Monte Carlo simulation proceeds as follows: 
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➔ Process 0 (master process): 

(a) computes and passes m to each process. 

➔ Each (slave) process ( say  j ): 

(a) simulates m independent realizations of θ; 

(b) computes Sj =  , and passes Sj back to the master program. 

➔ Process 0 (master program): 

(a) sums Sj and generates the final sum  S =  ; 

(b) computes the Monte Carlo estimate as   =  .  

In this example, the master process does not involve computing the sum of a portion of 

the data but it actually can. Also, each process is given the same number of samples. This 

works well if all CPU cores process the data at the same speed or approximately so. In 

practice, however, clock frequencies (i.e., computing speed) can vary markedly among 

processors. Hence, it can be more effective for each processor (or CPU core) to process a 

different number of samples, roughly proportional to its computing speed, and then the master 

program compute the weighted average of all samples obtained from the K cores. 

Parallel Computing of Single-Parameter Models 

A single-parameter model can serve as a building block for modeling. Consider a 

normal distribution with known mean μ and unknown variance σ
2
 to be inferred. The data 

density for a vector y of n identically independently distributed (iid) observations is: 

  P( y| )     exp ( ) (5) 

Where S
2 

=    is the sufficient statistic. Assuming an inverse- χ
2
 prior distribution 

with scale  and υ0 degrees of freedom, 

P(σ
2
)      exp (- ) (6) 

it can be shown that the posterior density of σ
2
 is a scaled inverse- χ

2
 distribution with scale  

  and  υ0 + n  degrees of freedom : 

σ
2
 |y ~    (   + n,   ) (7) 

Hence, the posterior mean of σ
2
 is      for  + n > 2. Numerically, the 

posterior distribution of σ
2
 can be inferred based on posterior samples generated from (7). 

Computing for this single-parameter normal model can follow exactly the same algorithm as 

parallel Monte Carlo simulation. Briefly, K parallel processes are executed, each generating a 

portion of the posterior samples of σ
2
. Then, the master process generates the final sum and 

computes the estimated posterior mean of σ
2
 as a weighted average of all sample averages. 

To show why the algorithm of parallel Markov chain simulation applies to parallel 

computing of a single parameter model, consider equation (4). For this single-parameter 

normal model, for example, the marginal posterior expectation of σ
2
 can be expressed as:       
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 E ( ) =  ƒ   ( ) d        (8) 

 Clearly, (8) implies a similar Monte Carlo implementation: if n samples of σ
2
 are 

generated from its marginal posterior density ; then, as n =  ; can be 

approximated by the sample average:  

 E ( )                                                                     (9) 

Parallel Markov Chain Monte Carlo Simulation 

Analytical solutions are not always available for most multiple-parameter models. 

Instead, MCMC simulation can be used to draw samples from the joint posterior distribution 

and then evaluate sampled values for the parameter(s) of interest while ignoring the values of 

other unknowns. MCMC methods are a variant of Monte Carlo schemes in which a Markov 

chain {Xj , j = 1, 2} is constructed with equilibrium distribution π equal to some distribution of 

interest, such as a posterior distribution in a analysis. Typically, the initial value is not a draw 

from the distribution π but if the chain is constructed properly, then Xt  π (here, d means 

convergence in distribution) and, under certain conditions, an estimator  converges to hπ as 

t= . However, a Markov chain is sequential by nature because the distribution of Xt+1 depends 

on the value of Xt ; where t indexes the order of MCMC iterations. This introduces a difficulty 

to parallelization of a Markov chain. 

Parallelization within a Single Chain 

By running multiple Markov chains, one often observe that samplers mix poorly and 

each chain may require a very long burn-in time. Hence, it would be preferable to develop 

parallelism within a single chain, instead of running multiple chains. Markov chain simulation 

is an iterative procedure, in the sense that simulation of the next value of the chain depends on 

the current value. This creates difficulty for delivering parallelism for a single Markov chain. 

Nevertheless, one will show that a single chain can be parallelized, subject to assumptions of 

conditional independence in the model. The key is to identify such steps that can be 

implemented in parallel. 

After all parameters are given initial values, the parallel MCMC algorithm proceeds by 

repeatedly conducting the following steps: 

➔ Master program: 

(a) samples a new σ, given realization of θ and the data y, and 

(b) distributes the new σ to each process. 

➔ Each process (k): 

(a) updates a subset of  that have been assigned to it, conditional on σ and y, 

(b) computes summary statistics for the updated ; and 

(c) passes the summary statistics back to the master program. 

Often, the above algorithm works quite well when the  are all independent of one 

another, given σ and y. In practice, however, such independence may not necessarily hold and 

strategies must be developed to deliver efficient parallel MCMC algorithms given specific 

dependence between elements. 
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Implementation of Communication Protocol 

The purpose of this example is to show parallel computing using the MPI (Message 

Passing Interface) library. The change in computing time for this example is, however, almost 

insignificant because sampling from a normal distribution is very quick. In addition, with 

parallel simulation, inter-process communication requires some extra time as overhead, which 

offset gains from parallel computing. 

MPI is a language-independent communication protocol used to program parallel 

computers that is extensively used for high-performance computing. More specifically, MPI is 

a library of routines for creating parallel programs e.g., in C, that allow users to create 

programs that can run on most parallel computer architectures. In the code, the MPI library is 

used to handle inter-process communications in the C program. With MPI, each task can have 

its own local memory during computation (but multiple tasks can reside in the same physical 

machine and/or an arbitrary number of machines). Typically, tasks exchange data by sending 

and receiving messages but data transfer usually requires cooperation among processors, that 

is, a “send” operation must have a matching “receive” operation. 

MPI_Comm_rank() is used to find out the ID of all participating processors and 

MPI_Comm_size() is used to get the number of participating processors. MPI_Bcast() is used 

to send common parameter values (e.g., number of simulation steps) to all participating 

processors. Then, after each processor has finished its work, the subroutine MPI_Reduction() 

is used to sum up the posterior values from all processors. Subroutine MPI_Reduction() 

collects data from all processors, reduces the data to a single value (e.g., by summation), and 

then stores the results on the master process (and on all processes as well). There are several 

predefined operations that MPI_Reduction() can provide. In addition to summation, it can also 

conduct multiplication, and find minimum or maximum values. Finally, the master processor 

computes the means and standard deviation (and other posterior statistics, when relevant) for 

the mean of the normal model. Sequential functions are used to generate random numbers, with 

process ID used as the random number seed.  

Implementation of Parallel Simulation Program for a Single Chain 

The process computes posterior statistics with the following code segments. 

 

The process allocates memory for random seed variable with the following code segment. 

 

The process broadcasts the number of simulation steps to all participating processes with the 

following code segment. 

 

Each process computes a partial sum of simulated values with the following code segment. 

tar0 = 1.0/(sd0*sd0); 

tar1 = (1.0*nind)/(sd1*sd1); 

varn = 1.0/(tar0 + tar1); 

sdn = sqrt(varn); 

mun = varn * (tar0*mu0 + tar1*mu1); 

MPI_Alloc_mem(sizeof(long), MPI_INFO_NULL, &idum); 

ierr = MPI_Bcast(&niters, 1, MPI_INT, root_process, MPI_COMM_WORLD); 
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The process does a reduction in which all partial sums are combined into the grand sum with 

the following code segment. 

Finally, the root process prints posterior mean and standard error of mu with the following 

code segment.  

 

Results and Discussion 

The example data are physical quantities measured on 7670 samples. The kernel 

density of average quantity is shown in Figure 1, which approximately suggests a normal 

distribution. Assume that the population variance of average quantity is 0.58. In this example, 

the prior distribution is assumed to be normal with mean equal to 4.0 and variance equal to 1.0 

(these are just guesses of the parameter values in the distribution of average quantity). A 

parallel C program is used in this analysis. To estimate μ; a total of 1 000 000 values is 

simulated for μ; which are handled by K = 10 processes, each generating 100 000 values and 

computing the partial sum. Then, the K partial sums are transferred back to process 0, where 

the Monte Carlo estimate is computed. The program only outputs the posterior mean and the 

standard deviation. The program also outputs minimum and maximum values. 

The posterior mean is estimated to be 3.394, which corresponded very well to the 

sample mean of 7670 samples (Table 1) because the impact of the prior on the posterior could 

be ignored given the very large sample size. The median and mean agreed well with each other 

(Table 1). These are indications that the posterior distribution of the mean of samples is 

symmetric. 

 
                        N=7670 Bandwidth=0.1099 

for (i = proc_id + 1; i < niters + 1; i += 

nprocs) 

{ 

  xi = mun + sdn * randomnormal(idum); 

  xi2 = xi * xi; 

  psum = psum + xi; 

  psum_xi2 = psum_xi2 + xi2; 

} 

ierr = MPI_Reduce(&psum, &sum, 1, MPI_DOUBLE, MPI_SUM, root_process, MPI_COMM_WORLD); 

ierr = MPI_Reduce(&psum_xi2, &sum_xi2, 1, MPI_DOUBLE, MPI_SUM, root_process, 

MPI_COMM_WORLD); 

if(proc_id == root_process)  

{ 

mumu = sum / niters; 

sdmu = sqrt((sum_xi2 - niters*mumu*mumu)/(niters-1)); 

 } 
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                                    Figure 1 Kernel density of physical quantity measured in 7670. 

Table 1 Posterior summary statistics of  physical quantity based on a single-parameter 

normal model.  

Sample set Min  Median  Mean  Max 

1 3.357 3.394 3.394 3.431 

2 3.356 3.394 3.394 3.429 

3 3.352 3.394 3.394 3.430 

4 3.357 3.394 3.394 3.436 

5 3.353 3.394 3.394 3.432 

6 3.355 3.394 3.394 3.430 

7 3.355 3.394 3.394 3.431 

8 3.354 3.394 3.394 3.428 

9 3.356 3.394 3.394 3.431 

10 3.358 3.394 3.394 3.433 

Pooled  3.352 3.394 3.394 3.436 

Min = minimum value;    max = maximum value. 

The above results were obtained from parallel computing on ten CPU cores. The run 

times in seconds using simulation steps (s = 1 000 000) with the various number of processors 

in MPI version. Speedups of various processors are listed in Table 2. 

Table 2 The Speedup obtained after four consecutive trial runs with simulation steps  

(s=1 000 000).  

No. of Processors Speedup 

8 7.33 

10 10.04 

16 16.10 

24 23.11 

 
Figure 2: The relation of Speedup and Number of processors 

When the program is executed with multiprocessor, the execution time for serial 

processing and the execution time for parallel processing are obtained for different processor. 

Then speedup are calculated. From Table 2 and Figure.2, it can be observed that parallel 

computing is more suitable for enormous data. The experimental results show that parallel 

algorithms using MPI achieve comparable accuracy and almost linear speedups over the 
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traditional serial version. The computational time of using the MCMC method on a data set is 

shown in Table 3. 

   Table 3 The results obtained after four consecutive trial runs with S = 1 000 000 000. 

Number of 

 Processors 

Execution Time 

(seconds) 

4 10.502036 

8 6.714650 

16 5.794617 

24 5.624466 

When the program is executed with multiprocessor, the execution time for parallel 

processing are obtained for different processor. The results in Figure.3 show that parallel 

execution time goes faster with increasing the number of processors.  

 

              Figure 3: The relation of No. of Processors and Execution Time 

Conclusion 

In this regard, high-performance computing offers a markedly competitive edge, not 

only in reducing computing time but also in tuning optimal models for prediction. A single 

chain MCMC algorithm tackles a large range of complex inferential problems that were 

previously not considered possible, tractable. In the meantime, statisticians are becoming ever 

more ambitious in the range (complexity) of models they consider and the algorithms for large 

complex models often require enormous amounts of computing power. 
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