
University of Yangon Research Journal 2016, Vol. 7 55

Parallel Single Chain in Markov Chain Monte Carlo Simulation

Wint Pa Pa Kyaw
*

†

Abstract

The Markov Chain Monte Carlo (MCMC) method is a statistical almost experimental approach

to computing integral using random positions, called samples, whose distribution is carefully

chosen. In this research, a normal distribution model with unknown mean and known variance is

considered. Posterior statistics are computed using the sample mean and standard deviation, as

well as the prior mean and standard deviation, instead of data input. Because this is a single-

parameter model, posterior samples of mean are simulated in parallel by Monte Carlo

simulation. This research also presents parallel communication schemes for simulated a single

chain in Markov chain using Message Passing Interface (MPI). In this simulation, the number of

simulation steps broadcast to all participating processes. Each process computes a partial sum of

simulated values. All partial sums are combined into the grand sum. Finally, the root process

computes posterior mean and standard variance. A major purpose of this research is to advocate

the use of parallelization within a single chain, hence infusing high-performance computing

technologies.

Keywords: parallel processing, Message Passing Interface, communication, Markov chain

Introduction

Typically, implementation of a high-dimensional model based on Markov Chain Monte

Carlo (MCMC) techniques is notoriously intensive in computing and often requires days,

weeks, or even months of CPU (Central Processing Unit) time on personal computers and

workstations. Therefore, in order to overcome such computational burden, parallel computing

becomes appealing.

Parallel computing operates on the principle that a large problem can be split into

smaller components and solved concurrently (i.e.” in parallel”), each on a separate processor

(or CPU core). An instance of a computer program and its activities that are taking place on

each processor is referred to a process. Thus, parallel computing involves activating multiple

processes that concurrently carry out related computing jobs and combining results by the main

“controlling” process. Parallel computing can be achieved by programming with C, C++ e.g.,

using the MPI (Message Passing Interface) library to handle inter-process communication.

High-performance computing communities have developed parallel programs for decades but

were previously limited to programs running on expensive super-computers. In the past twenty

years, interest in parallel computing has grown markedly due to physical constraints that

prevent frequency scaling and to the need to handle datasets of unprecedented dimensionalities

that are being generated. Parallel computing has now become a dominant paradigm in current

computer architectures, mainly in the form of multi-core processors.

Parallel MCMC methods have recently been adopted in statistics and informatics and in

image processing. MCMC algorithms are seemingly serial, and parallelism is not as

straightforward as one would expect. Many intensive computational tasks in some applications

have been handled via some simple data parallelism, implemented through the “multiple-

tasking” mechanism. Multiple-tasking allows each processor to switch between tasks being

executed on it, without having to wait for each task to finish, but this type of “parallel”

computing is not scalable with the number of jobs. Recently, parallel MCMC algorithms and

strategies have become a focal point for scientific computing. This is largely due to the need to

handle datasets of unprecedented sizes. With datasets of unprecedented sizes in a model, the

computing task is highly challenging, particularly with sophisticated models via MCMC

*
 Associate Professor, Department of Computer Studies, University of Yangon

56 University of Yangon Research Journal 2016, Vol. 7

implementation. This paper presents a technical description of parallel MCMC method. The

algorithm typically deals with parallelization within a single chain.

Parallel Simulation for a Single-Parameter Normal Model

Consider a normal distribution model with unknown μ and known σ
2
. For a vector y of

n identically independently distributed (iid) observations, the likelihood is:

P (y|µ) =
n

i 1

 (1)

If a normal prior is assumed, that is, P (µ) exp (-)). (2)

where μ0 and are hyperparameters. It can be shown that the posterior density μ is also

normal :

P (µ|y) = N ((3)

Intuitively, the posterior mean of θ is expressed as a weighted average of the prior

mean (μ0) and of the sample mean (), with weights equal to the corresponding precisions,

 and , respectively. Because this is a single-parameter model, posterior samples of μ can

be simulated in parallel by following the same algorithm as for Monte Carlo simulation.

Parallel Monte Carlo Methods

In practice, many statistical problems involve integrating over hundreds or even

thousands of dimensions but usually these problems are not analytically tractable. Instead,

Monte Carlo simulation methods can be used to tackle high-dimensional integrals. Standard

Monte Carlo integration algorithms distribute the evaluation points uniformly over the

integration regions.

Parallel Computing for Evaluating Integrals

To begin, consider the following integral

E (P (θ)) = P(θ) () d θ (4)

for some high-dimensional θ with density (). Suppose the integral cannot be evaluated

analytically. If n realizations of θ can be sampled independently from () then, according to

the strong law of large numbers, the sample average provides an approximation

to when n → .

Simple Monte Carlo algorithms proceed by averaging large numbers of values that are

generated independently of each other. Obviously, Monte Carlo simulation is parallel in

computing because it can be conducted concurrently. By parallel computing, the entire set of

samples can be divided among the available CPU cores and then each core generates a portion

and summarizes its local samples. After all processors have finished their tasks, a master

program summarizes all the partial data and outputs the final result.

Suppose that there are K CPU cores that generate a total of T samples, each handling an

equal portion of these samples. For simplicity, assume that T is divisible by K, such that the

quotient (m = T/K) is an integer. Then, parallel Monte Carlo simulation proceeds as follows:

University of Yangon Research Journal 2016, Vol. 7 57

➔ Process 0 (master process):

(a) computes and passes m to each process.

➔ Each (slave) process (say j):

(a) simulates m independent realizations of θ;

(b) computes Sj = , and passes Sj back to the master program.

➔ Process 0 (master program):

(a) sums Sj and generates the final sum S = ;

(b) computes the Monte Carlo estimate as = .

In this example, the master process does not involve computing the sum of a portion of

the data but it actually can. Also, each process is given the same number of samples. This

works well if all CPU cores process the data at the same speed or approximately so. In

practice, however, clock frequencies (i.e., computing speed) can vary markedly among

processors. Hence, it can be more effective for each processor (or CPU core) to process a

different number of samples, roughly proportional to its computing speed, and then the master

program compute the weighted average of all samples obtained from the K cores.

Parallel Computing of Single-Parameter Models

A single-parameter model can serve as a building block for modeling. Consider a

normal distribution with known mean μ and unknown variance σ
2
 to be inferred. The data

density for a vector y of n identically independently distributed (iid) observations is:

 P(y|) exp () (5)

Where S
2

= is the sufficient statistic. Assuming an inverse- χ
2
 prior distribution

with scale and υ0 degrees of freedom,

P(σ
2
) exp (-) (6)

it can be shown that the posterior density of σ
2
 is a scaled inverse- χ

2
 distribution with scale

 and υ0 + n degrees of freedom :

σ
2
 |y ~ (+ n,) (7)

Hence, the posterior mean of σ
2
 is for + n > 2. Numerically, the

posterior distribution of σ
2
 can be inferred based on posterior samples generated from (7).

Computing for this single-parameter normal model can follow exactly the same algorithm as

parallel Monte Carlo simulation. Briefly, K parallel processes are executed, each generating a

portion of the posterior samples of σ
2
. Then, the master process generates the final sum and

computes the estimated posterior mean of σ
2
 as a weighted average of all sample averages.

To show why the algorithm of parallel Markov chain simulation applies to parallel

computing of a single parameter model, consider equation (4). For this single-parameter

normal model, for example, the marginal posterior expectation of σ
2
 can be expressed as:

58 University of Yangon Research Journal 2016, Vol. 7

 E () = ƒ () d (8)

 Clearly, (8) implies a similar Monte Carlo implementation: if n samples of σ
2
 are

generated from its marginal posterior density ; then, as n = ; can be

approximated by the sample average:

 E () (9)

Parallel Markov Chain Monte Carlo Simulation

Analytical solutions are not always available for most multiple-parameter models.

Instead, MCMC simulation can be used to draw samples from the joint posterior distribution

and then evaluate sampled values for the parameter(s) of interest while ignoring the values of

other unknowns. MCMC methods are a variant of Monte Carlo schemes in which a Markov

chain {Xj , j = 1, 2} is constructed with equilibrium distribution π equal to some distribution of

interest, such as a posterior distribution in a analysis. Typically, the initial value is not a draw

from the distribution π but if the chain is constructed properly, then Xt π (here, d means

convergence in distribution) and, under certain conditions, an estimator converges to hπ as

t= . However, a Markov chain is sequential by nature because the distribution of Xt+1 depends

on the value of Xt ; where t indexes the order of MCMC iterations. This introduces a difficulty

to parallelization of a Markov chain.

Parallelization within a Single Chain

By running multiple Markov chains, one often observe that samplers mix poorly and

each chain may require a very long burn-in time. Hence, it would be preferable to develop

parallelism within a single chain, instead of running multiple chains. Markov chain simulation

is an iterative procedure, in the sense that simulation of the next value of the chain depends on

the current value. This creates difficulty for delivering parallelism for a single Markov chain.

Nevertheless, one will show that a single chain can be parallelized, subject to assumptions of

conditional independence in the model. The key is to identify such steps that can be

implemented in parallel.

After all parameters are given initial values, the parallel MCMC algorithm proceeds by

repeatedly conducting the following steps:

➔ Master program:

(a) samples a new σ, given realization of θ and the data y, and

(b) distributes the new σ to each process.

➔ Each process (k):

(a) updates a subset of that have been assigned to it, conditional on σ and y,

(b) computes summary statistics for the updated ; and

(c) passes the summary statistics back to the master program.

Often, the above algorithm works quite well when the are all independent of one

another, given σ and y. In practice, however, such independence may not necessarily hold and

strategies must be developed to deliver efficient parallel MCMC algorithms given specific

dependence between elements.

University of Yangon Research Journal 2016, Vol. 7 59

Implementation of Communication Protocol

The purpose of this example is to show parallel computing using the MPI (Message

Passing Interface) library. The change in computing time for this example is, however, almost

insignificant because sampling from a normal distribution is very quick. In addition, with

parallel simulation, inter-process communication requires some extra time as overhead, which

offset gains from parallel computing.

MPI is a language-independent communication protocol used to program parallel

computers that is extensively used for high-performance computing. More specifically, MPI is

a library of routines for creating parallel programs e.g., in C, that allow users to create

programs that can run on most parallel computer architectures. In the code, the MPI library is

used to handle inter-process communications in the C program. With MPI, each task can have

its own local memory during computation (but multiple tasks can reside in the same physical

machine and/or an arbitrary number of machines). Typically, tasks exchange data by sending

and receiving messages but data transfer usually requires cooperation among processors, that

is, a “send” operation must have a matching “receive” operation.

MPI_Comm_rank() is used to find out the ID of all participating processors and

MPI_Comm_size() is used to get the number of participating processors. MPI_Bcast() is used

to send common parameter values (e.g., number of simulation steps) to all participating

processors. Then, after each processor has finished its work, the subroutine MPI_Reduction()

is used to sum up the posterior values from all processors. Subroutine MPI_Reduction()

collects data from all processors, reduces the data to a single value (e.g., by summation), and

then stores the results on the master process (and on all processes as well). There are several

predefined operations that MPI_Reduction() can provide. In addition to summation, it can also

conduct multiplication, and find minimum or maximum values. Finally, the master processor

computes the means and standard deviation (and other posterior statistics, when relevant) for

the mean of the normal model. Sequential functions are used to generate random numbers, with

process ID used as the random number seed.

Implementation of Parallel Simulation Program for a Single Chain

The process computes posterior statistics with the following code segments.

The process allocates memory for random seed variable with the following code segment.

The process broadcasts the number of simulation steps to all participating processes with the

following code segment.

Each process computes a partial sum of simulated values with the following code segment.

tar0 = 1.0/(sd0*sd0);

tar1 = (1.0*nind)/(sd1*sd1);

varn = 1.0/(tar0 + tar1);

sdn = sqrt(varn);

mun = varn * (tar0*mu0 + tar1*mu1);

MPI_Alloc_mem(sizeof(long), MPI_INFO_NULL, &idum);

ierr = MPI_Bcast(&niters, 1, MPI_INT, root_process, MPI_COMM_WORLD);

60 University of Yangon Research Journal 2016, Vol. 7

The process does a reduction in which all partial sums are combined into the grand sum with

the following code segment.

Finally, the root process prints posterior mean and standard error of mu with the following

code segment.

Results and Discussion

The example data are physical quantities measured on 7670 samples. The kernel

density of average quantity is shown in Figure 1, which approximately suggests a normal

distribution. Assume that the population variance of average quantity is 0.58. In this example,

the prior distribution is assumed to be normal with mean equal to 4.0 and variance equal to 1.0

(these are just guesses of the parameter values in the distribution of average quantity). A

parallel C program is used in this analysis. To estimate μ; a total of 1 000 000 values is

simulated for μ; which are handled by K = 10 processes, each generating 100 000 values and

computing the partial sum. Then, the K partial sums are transferred back to process 0, where

the Monte Carlo estimate is computed. The program only outputs the posterior mean and the

standard deviation. The program also outputs minimum and maximum values.

The posterior mean is estimated to be 3.394, which corresponded very well to the

sample mean of 7670 samples (Table 1) because the impact of the prior on the posterior could

be ignored given the very large sample size. The median and mean agreed well with each other

(Table 1). These are indications that the posterior distribution of the mean of samples is

symmetric.

 N=7670 Bandwidth=0.1099

for (i = proc_id + 1; i < niters + 1; i +=

nprocs)

{

 xi = mun + sdn * randomnormal(idum);

 xi2 = xi * xi;

 psum = psum + xi;

 psum_xi2 = psum_xi2 + xi2;

}

ierr = MPI_Reduce(&psum, &sum, 1, MPI_DOUBLE, MPI_SUM, root_process, MPI_COMM_WORLD);

ierr = MPI_Reduce(&psum_xi2, &sum_xi2, 1, MPI_DOUBLE, MPI_SUM, root_process,

MPI_COMM_WORLD);

if(proc_id == root_process)

{

mumu = sum / niters;

sdmu = sqrt((sum_xi2 - niters*mumu*mumu)/(niters-1));

 }

University of Yangon Research Journal 2016, Vol. 7 61

 Figure 1 Kernel density of physical quantity measured in 7670.

Table 1 Posterior summary statistics of physical quantity based on a single-parameter

normal model.

Sample set Min Median Mean Max

1 3.357 3.394 3.394 3.431

2 3.356 3.394 3.394 3.429

3 3.352 3.394 3.394 3.430

4 3.357 3.394 3.394 3.436

5 3.353 3.394 3.394 3.432

6 3.355 3.394 3.394 3.430

7 3.355 3.394 3.394 3.431

8 3.354 3.394 3.394 3.428

9 3.356 3.394 3.394 3.431

10 3.358 3.394 3.394 3.433

Pooled 3.352 3.394 3.394 3.436

Min = minimum value; max = maximum value.

The above results were obtained from parallel computing on ten CPU cores. The run

times in seconds using simulation steps (s = 1 000 000) with the various number of processors

in MPI version. Speedups of various processors are listed in Table 2.

Table 2 The Speedup obtained after four consecutive trial runs with simulation steps

(s=1 000 000).

No. of Processors Speedup

8 7.33

10 10.04

16 16.10

24 23.11

Figure 2: The relation of Speedup and Number of processors

When the program is executed with multiprocessor, the execution time for serial

processing and the execution time for parallel processing are obtained for different processor.

Then speedup are calculated. From Table 2 and Figure.2, it can be observed that parallel

computing is more suitable for enormous data. The experimental results show that parallel

algorithms using MPI achieve comparable accuracy and almost linear speedups over the

62 University of Yangon Research Journal 2016, Vol. 7

traditional serial version. The computational time of using the MCMC method on a data set is

shown in Table 3.

 Table 3 The results obtained after four consecutive trial runs with S = 1 000 000 000.

Number of

 Processors

Execution Time

(seconds)

4 10.502036

8 6.714650

16 5.794617

24 5.624466

When the program is executed with multiprocessor, the execution time for parallel

processing are obtained for different processor. The results in Figure.3 show that parallel

execution time goes faster with increasing the number of processors.

 Figure 3: The relation of No. of Processors and Execution Time

Conclusion

In this regard, high-performance computing offers a markedly competitive edge, not

only in reducing computing time but also in tuning optimal models for prediction. A single

chain MCMC algorithm tackles a large range of complex inferential problems that were

previously not considered possible, tractable. In the meantime, statisticians are becoming ever

more ambitious in the range (complexity) of models they consider and the algorithms for large

complex models often require enormous amounts of computing power.

Acknowledgements

I would like to express my sincere grateful very much to Associate Professor Dr Soe Mya Mya Aye, Head of

Department of Computer Studies, University of Yangon, for her kind permission to carry out this research. I am

greatly indebted to Dr Pho Kaung, Rector, and University of Yangon for his excellent help and creative ideas that

have assisted me in broadening my research skills and his continuous guidance, devotion and perpetual

encouragement.

References

Edelman,A., (2004), Applied Parallel Computing, Massachusetts Institute of Technology press.

Grama,A., Gupta,A., Karypis,G. and Kumar,V., (2003), Introduction to Parallel Computing, 2
nd

 Edition, Pearson

Education, The Benjamin/Cummings, ISBN: 7-111-12512-6.

 Karniadakis,G.E. and Kirby,R.M. , (2007), Parallel Scientific Computing in C++ and MPI, Cambridge

University Press, London, ISBN:9780521520805.

Sasikumar,M., Shikhare,D. and Prakash,P.,R.,(2000), Introduction to Parallel Processing, Prentice-Hall,New

Delhi, India, ISBN-81-203-1619-3.

